Taking too long? Close loading screen.

SOA ASA Exam: Probability (P)

Basic Calculus

Integrations

  • \(\dfrac{d}{dx}a^x=a^x\ln(a)\)
  • \(\int{{{}\over{}}a^xdx}=\dfrac{a^x}{\ln(a)}\text{ for }a>0\)

 

Logarithmic Differentiation

\(\dfrac{df(x)}{dx}=f(x)(\dfrac{d\ln f(x)}{dx})\), since \(\dfrac{d\ln f(x)}{dx}=\dfrac{df(x)/dx}{f(x)}\)

 

Partial Fraction Decomposition

\(\int{{{x}\over{1+x}}dx}=\int{(1-{{1}\over{1+x}})dx}\)

 

Integration by Parts

\(\int{udv}=uv-\int{vdu}\)

Special Cases:

    • \(\int_{0}^{\infty }{xe^{-ax}dx}=\dfrac{1}{a^2}\), for \(a>0\)
    • \(\int_{0}^{\infty }{x^2e^{-ax}dx}=\dfrac{2}{a^3}\), for \(a>0\)

 

Sets

Set Properties

  • Associative Property
    \((A\cup B)\cup C=A\cup (B\cup C)\) and \((A\cap B)\cap C=A\cap (B\cap C)\)
  • Distributive Property
    \(A\cup (B\cap C)=(A\cup B)\cap (A\cup C))\) and \(A\cap (B\cup C)=(A\cap B)\cup (A\cap C)\)
  • Distributive Property for Complement
    \((A\cup B)’=A’\cap B’\) and \((A\cap B)’=A’\cup B’\)

 

Basic Probability Relationships

  • \(Pr[A\cup B]=Pr[A]+Pr[B]-Pr[A\cup B]\)
  • \(Pr[A\cup B\cup C]=Pr[A]+Pr[B]+Pr[C]-Pr[A\cap B]-Pr[B\cap C]-Pr[A\cap C]+Pr[A\cap B\cap C]\)
  • If A and B are independent, then:
    • \(Pr(A\cap B)=Pr(A)Pr(B)\)
    • \(Pr(A\cap B’)=Pr(A)Pr(B’)=Pr(A)(1-Pr(B))\)
    • \(Pr(A’\cap B)=Pr(A’)Pr(B)=(1-Pr(A))Pr(B)\)

 

Combinatorics

Number of Permutations

\(n!\)

 

Number of Distinct Permutations

\(_{n}P_k=\dfrac{n!}{(n-k)!}=\dfrac{n!}{{{k}_{1}}!{{k}_{2}}!\cdots {{k}_{j}}!}\)

 

Number of Combinations

\(_{n}C_k=\left( \begin{matrix}n\\k \\\end{matrix} \right)=\dfrac{n!}{k!(n-k)!}=\dfrac{n(n-1)\cdots (n-k+1)}{k!}\)

 

Conditional Probabilities

\(P[A|B]=\dfrac{P[A\cap B]}{P[B]}\)

 

Bayes’ Theorem

Law of Total Probabilities

\(P[A]=\sum\limits_{i=1}^{n}{P[B_i]P[A|B_i]}\)

 

Bayes’ Theorem

\(P[A_j|B]=\dfrac{P[A_j]P[B|A_j]}{\sum\limits_{i=1}^{n}{P[A_i]P[B|A_i]}}\)

 

Random Variables

Probability Mass Function (PMF)

\(p(x)=Pr(X=x)\)

 

Probability Density Function (PDF)

\(f(x)=\dfrac{dF(x)}{dx}\) or logarithmic differentiation:

  1. Given \(F(x)=a\)
  2. Taking log: \(\ln F(x) = ln(a)\)
  3. Differentiate: \(\dfrac{d\ln F(x)}{dx}=\dfrac{d\ln a}{dx}=\dfrac{d F(x) / dx)}{F(x)}\)
  4. Replace the \(F(x)\) in the differentiated formula: \(\dfrac{d \boxed{F(x)}}{dx}=\boxed{F(x)}\times \dfrac{d\ln a}{dx}\)
  5. i.e. \(\dfrac{d \boxed{F(x)}}{dx}=\boxed{F(x)}(\dfrac{d\ln \boxed{F(x)}}{dx})\)
  6. Similarly, \(\dfrac{d \boxed{f(x)}}{dx}=\boxed{f(x)}(\dfrac{d\ln \boxed{f(x)}}{dx})\)

The pdf \(f(x)\) must satisfy:

  1. \(f(x)\ge0\text{ for all }x\)
  2. \(\int_{-\infty}^{\infty}{f(x)dx}=1\)

 

Insurance Concepts

  • Deductible: Amount \(d\) subtracted from each loss. Payment is \(max(X-d,0)\).

\(E[Y^L]=E(X-d)_+=\int_{d}^{\infty }{(x-d)f_X(x)dx}\) or \(=\int_{d}^{\infty }{S_X(x)}\)

  • Benefit Limit: Highest amount \(u\) that will be paid. Payment is \(min(X,u)\).
  • Coinsurance: Insurance pays \(c<1\) times the loss.
  • Inflation: Losses increase from \(X\) to \((1+r)X\).

 

Percentiles

The \(100𝑝^\text{th}\) percentile is the smallest value of \(\pi_p\) where \(F_X(\pi_q) \ge p\).

 

Mode

Given PDF, the mode is calculated by:

  1. \(p(n)=cp(n-1)\)
  2. The mode is \(c\) when \(c<1\)

Or, by differentiating the PDF, the mode is calculated by:

  1. The mode is \(x\) when \(\dfrac{d}{dx}f_X(x)=0\)

 

Conditional Probability for Random Variables

Let \(\gamma=X|\text{cond}\). \(\gamma\) is defined by its distribution function:

\(F_\gamma(y)=Pr(\gamma\le y|\text{cond})\)

 

Mean

The Mean of Discrete R.V.

\(E[X]=\sum{xp(x)}\)

 

The Mean of Continuous R.V.

\(E[X]=\int_{-\infty}^{\infty}{xf(x)dx}\)

\(E[X]=\int_{0}^{\infty}{S(x)dx}=\int_{0}^{\infty}{(1-F(x))dx}\)

\(E[g(X)]=\int_{-\infty}^{\infty}{g(x)f_X(x)dx}\)

\(E[g(X)]=\int_{0}^{\infty}{g'(x)S_X(x)dx}\) for domain \(x\ge 0\)

\(E[g(X)|j\le X\le k]=\dfrac{\int_{j}^{k}{g(x)f_X(x)dx}}{Pr(j\le X\le k)}\)

 

The Mean of Continuous R.V. and a Constant

\(E[\min(X,k)]=\int_{-\infty}^{k}{x(x)dx}+k(1-F(k))\)

If \(f(x)=0\) for \(x<0\), then

  • \(E[X]=\int_{0}^{\infty}{(1-F(x))dx}\)
  • \(E[\min(X,k)]=\int_{0}^{k}{(1-F(x))dx}\)

 

Variance and Other Moments

Variance

\(Var(X)=E[X^{2}]-\mu^{2}\)=\(E[(X-\mu)^2]\)

\(Var(aX+b)=a^2Var(X)\)

\(CV[X] = \dfrac{SD[X]}{E[X]}\)

 

Bernoulli Shortcut

If \(Pr(X=a)=1-p\) and \(Pr(X=b)=p\), then \(Var(X)=(b-a)^{2}p(1-p)\)

 

Coefficient of Variance: \(\dfrac{\sigma}{\mu}\)

 

Skewness: \(\dfrac{E[(X-\mu)^3]}{\sigma^3}\)

 

Kurtosis: \(\dfrac{E[(X-\mu)^4]}{\sigma^4}\)

 

Covariance and Correlation Coefficient

Covariance

\(Cov(𝑋,Y)=𝐸[(X-\mu_X)(Y-\mu_Y)]\)

\(Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)\)

\(Var(aX+bY)=a^2Var(X)+b^2Var(Y)+2abCov(X,Y)\)

  • \(Var(X-Y)=Var(X)+Var(Y)-2Cov(X,Y)\)

When \(a=1\), \(b=1\), \(Cov(XY)=E[XY]-E[X]E[Y]\)

 

Independence

Independence implies covariance of 0, but not conversely.

If two variables are independent, then the expected value of their product equals the product of their expectations.

\(E[XY]=E[X]E[Y]\)

 

Rules

  • \(Cov(X,X)=Var(X)\)
  • \(Cov(X,Y)=Cov(Y,X)\)
  • \(Cov(aX,bY)=abCov(X,Y)\)
  • \(Cov(X,aY+bZ)=aCov(X,Y)+bCov(X,Z)\)

 

Covariance Matrix

\(\sum =(\begin{matrix}
\sigma _{X}^{2} & {{\sigma }_{XY}} \\
{{\sigma }_{XY}} & \sigma _{Y}^{2} \\
\end{matrix})\)

 

Correlation Coefficient

\(\rho_{X,Y}=Corr(X,Y)=\dfrac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}\)

 

Joint Distribution

Joint Density Function

\(\Pr(a<X\leq b,c<Y\leq d)=\int_{a}^{b}{\int_{c}^{d}{f(x,y)dydx}}\)

 

Distributions

Distribution PDF CDF \(E(X)\) \(Var(X)\) \(M_X(t)\) Special Property

Discrete Uniform

For \(0\leq x=1,2,…,n\),

\(Pr(X=k)=\dfrac{1}{n}\)

\(\dfrac{a+b}{2}\) \(\dfrac{(b-a+1)^2-1}{12}\)

Binomial

For \(k=0,1,…n\),

\(Pr(X=k)=\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)p^k(1-p)^{n-k}\)

\(np\) \(npq\) \((pe^t+q)^n\)

Hypergeometric

For \(d=0,1,…D\),

\(Pr(X=d)=\dfrac{\left( \begin{matrix}
N-D \\
n-d \\
\end{matrix} \right)\left( \begin{matrix}
D \\
d \\
\end{matrix} \right)}{\left( \begin{matrix}
N \\
n \\
\end{matrix} \right)}\)

\(\dfrac{nD}{N}\) \(n(\dfrac{D}{N})(\dfrac{N-D}{N})(\dfrac{N-n}{N-1})\)

For sampling with replacement, \(X\sim Bin(n,p=\dfrac{D}{N}):

  • \(\mu=n(\dfrac{D}{N})\)
  • \(\sigma^2=n(\dfrac{D}{N})(\dfrac{N-D}{N})\)

Trinomial

For \(k_1+k_2+k_3=n\),

\(Pr(X_1=k_1,X_2=k_2,X_3=k_3)\)

\(=\dfrac{n!}{k_1!k_2!k_3!}p_1^{k_1}p_2^{k_2}p_3^{k_3}\)

\(Cov(X_i,X_j)=-np_ip_j\)

Negative Binomial

For \(n=0,1,…\),

\(Pr(N=r)=\left( \begin{matrix}
k+n-1 \\
n \\
\end{matrix} \right)p^k(1-p)^{n}\)

\(\dfrac{r(1-p)}{p}\)  \(r(\dfrac{1-p}{p^2})\) \((\dfrac{pe^t}{1-(1-p)e^t})^r\) \(NB(r=1,p)\sim Geo(p)\)

Geometric

For \(n=0,1,…\),

\(Pr(N=n)=p(1-p)^{n}\)

\(S_N(n)\)

\(=(1-p)^n\)

\(\dfrac{1-p}{p}\)  \(\dfrac{1-p}{p^2}\) \(\dfrac{pe^t}{1-(1-p)e^t}\)

Geometric Series: \(\sum\limits_{n=1}^{\infty}{np^n}=\dfrac{p}{(1-p)^2}\)

Poisson

For \(n\ge 0\),

\(Pr(N=n)=e^{-\lambda}\dfrac{\lambda^n}{n!}\)

\(\lambda\) \(\lambda\) \(e^{\lambda(e^t-1)}\) Sum of Poissons \(\sim Poisson(\lambda=\sum_{i=1}^{n}\lambda_i)\)

Continuous Uniform

For \(0\leq x\leq\theta\),

\(f(x)=\dfrac{1}{\theta}\)

\(F(x)\)

\(=\dfrac{x}{\theta}\)

\(\dfrac{\theta}{2}\) \(\dfrac{\theta^{2}}{12}\)

Exponential

For \(x\ge 0\),

\(f(x)=\dfrac{e^{-x/\theta}}{\theta}\)

For \(x\ge 0\),

\(F(x)\)

\(=1-e^{-x/\theta}\)

\(\theta\) \(\theta^2\)

1. \(E[X]=\theta\)

=> \(\int_{0}^{\infty}{x\dfrac{1}{\theta}e^{-x/\theta}}=\theta\)

=> \(\int_{0}^{\infty}{xe^{-x/\theta}}=\theta^2\)

=> \(\int_{0}^{\infty}{xe^{-ax}}=a^{-2}\)

2. \(E[X^2]=2\theta^2\)

=> \(\int_{0}^{\infty}{x^2\dfrac{1}{\theta}e^{-x/\theta}}=2\theta^2\)

=> \(\int_{0}^{\infty}{x^2e^{-x/\theta}}=2\theta^3\)

=> \(\int_{0}^{\infty}{x^2e^{-ax}}=2a^{-3}\)

3. Memoryless Property:

\(X-x|X\ge x\) is exponential with the same distribution as X.

4. Sum of Exponential \(\sim Gamma(n,\theta)\), where \(f(x)=\dfrac{1}{\Gamma(n)\theta^n}x^{n-1}e^{-x/\theta}\)

Normal

\(f(x)=\phi(x)=\dfrac{e^{-(x-\mu)^2/2\sigma^2}}{\sigma \sqrt{2\pi}}\) \(F_X(x)=\Phi(\dfrac{x-\mu}{\sigma})\) \(\mu\) \(\sigma^2\)

1. \(\phi(-x)=\phi(x)\)

=> \(\Phi(x)=1-\Phi(-x)\)

2. \(\xi_p=\mu+\sigma z_p\)

3. If \(X\) is normal, then \(aX+b\)

4. If \(X\) and \(Y\) are independent and normal, then \(aX+bY+c\)

5. Linear Interpolation:

\(f(x)=(\dfrac{x-x_1}{x_2-x_1})y_2+(\dfrac{x_2-x}{x_2-x_1})y_1\), \(x_1<x<x_2\)

Bivariate Normal

\(X\) and \(Y\) are bivariate normal if:

  • \(X=\mu_X+aZ_1\)
  • \(Y=\mu_Y+bZ_1+cZ_2\)
  \(E[X|Y]=\mu_X+\dfrac{\rho\sigma_X}{\sigma_Y}(Y-\mu_Y)\) \(Var(X|Y)=\sigma_X^2(1-\rho^2)\)

1. If \(\sigma_{XY}=0\), X and Y a re independent.

 

Marginal Distribution

The distributions of the individual variables are called marginal distributions.

\(f_X(x)=\int_{-\infty}^{\infty}{f(x,y)dy}\)

\(f_Y(y)=\int_{-\infty}^{\infty}{f(x,y)dx}\)

 

Independence

A necessary and sufficient condition for independence is that the joint density function can be expressed as the product of two functions \(f(x,y)=g(x)h(y)\) where

  • \(g(x)\) is not a function of \(y\) and \(h(y)\) is not a function of \(x\), and in addition,
  • the domain must be a rectangle.

 

Joint Moments

\(E[g(x,y)]=\int{\int{g(x,y)f(x,y)dydx}}\)

 

Independence

If the variables are independent, then \(E[g(X)h(Y)] = E[g(X)]E[h(Y)]\)

 

Conditional Distribution

Conditional Density

\(f_{X|Y}(x|y)=\dfrac{f(x,y)}{f_Y(y)}\)

 

Law of Total Probabilities

\(f_X(x)=\int_{-\infty}^{\infty}{f_{X|Y}(x|y)f_Y(y)dy}\)

 

Bayes’ Theorem

\(f_{X|Y}(x|y)=\dfrac{f_{X|Y}(x|y)f_Y(y)dy}{f_X(x)}=\dfrac{f_{X|Y}(x|y)f_Y(y)dy}{\int_{-\infty}^{\infty}{f_{Y|X}(y|w)f_X(w)dw}}\)

 

Conditional Moments

\(E[g(X)|Y=y]=\dfrac{\int_{-\infty}^{\infty}{g(x)f(x,y)dx}}{f_Y(y)}\)

\(E[g(X)|Y>y]=\dfrac{\int_{-\infty}^{\infty}{g(x)f(x,y)dx}}{S_Y(y)}\)

\(Var(X|Y>y)=\dfrac{E[X^2|Y>y]}{S_Y(y)}-(\dfrac{E[X|Y>y]}{S_Y(y)})^2\)

 

Double Expectation

\(E[g(X)]=E_Y[E_X[g(X)|Y]]\)

Specifically,

  • \(E[X]=E_Y[E_X[X|Y]]\)
  • \(E[X^2]=E_Y[E_X[X^2|Y]]\)

 

Conditional Variance

\(Var(X)=E[Var(X|Y)]+Var(E[X|Y])\)

 

Central Limit Theorem

The Central Limit Theorem says that:

If \(X_i,i=1,…,n\) are a set of independent identically distributed random variables not necessarily normal, then as \(n->\infty\), the distribution of the sample mean approaches a normal distribution.

Suppose the underlying distribution has mean \(\mu\) and variance \(\sigma^2\). Then:

  • \(E[\bar{X}]=[\dfrac{\sum_{i=1}^{n}E[X_i]}{n}]=\dfrac{n\mu}{n}=\mu\)
  • \(Var(\bar{X}]=Var(\dfrac{\sum_{i=1}^{n}E[X_i]}{n})=\dfrac{1}{n^2}\sum_{i=1}^{n}Var(X_i)=\dfrac{\sigma^2}{n}\)

 

Central Limit Theorem

Let \(\bar{X}\) be the sample mean of a random sample taken from a distribution with mean \(\mu\) and finite non-zero variance \(\sigma^2\). Then:

\(\dfrac{(\bar{X}-\mu)}{\sigma/\sqrt{n}}\) converges to a standard normal distribution (\(Z\sim N(0,1)\))

 

Order Statistics

Maximum & Minimum

\(X_{(1)}=min(X_1,X_2,…,X_n)\)

\(X_{(n)}=max(X_1,X_2,…,X_n)\)

For IID r.v’s:

For minimum, \(S_{X_{(1)}}(x)=[S_X(x)]^n\), and the pdf is \(f_{X_{(1)}}(x)=f_Y(x)=n(1-F_X(x))^{n-1}f_X(x)\)

For Maximum, \(F_{X_{(n)}}(x)=[F_X(x)]^n\), and the pdf is \(f_{X_{(n)}}(x)=f_Y(x)=n(F_X(x))^{n-1}f_X(x)\)

 

\(k^{th}\) Order Statistic

\(f_{Y_{(k)}}(x)=\dfrac{n!}{(k-1)!1!(n-k)!}F_X(x)^{k-1}f_X(x)(1-F_X(x))^{n-k}\)

For Uniform r.v. on \([0,\theta]\), \(E_{Y_{(k)}}(x)=\dfrac{k\theta}{n+1}\)

Median of a sample size of 3

Given \(f_X(x)\), we want \(f_Y(y)\), where \(Y\) is the median of the value from the sample of 3 randomly selected from the distribution.

    1. Obtain \(F_X(x)\)
    2. \(f_Y(y)=\dfrac{3!}{(2-1)!1!(3-1)!}F_X(x)^{2-1}f_X(x)S_X(x)^{3-2}\), which means
      • 1 sample is smaller than \(f_X(x)\), represented by \(F_X(x)\)
      • 1 sample is right at the value, represented by \(f_X(x)\)
      • 1 sample is larger than \(f_X(x)\), represented by \(S_X(x)=1-F_X(x)\)

 

Moment Generating Function

The moment generating function \(M_X(t)\) of a random variable X is defined by:

\(M_X(t)=E[e^{tX}]\)

 

MGF Features

  1. The moment generating function generates moments. The nth derivative of the moment generating function evaluated at 0 is the nth raw moment:
    \(M_X^{(n)}(t=0)=E[X^{n}]\)
  2. The moment generating function of the sum of independent random variables is the product of their moment generating functions:
    \(M_{X+Y}(t)=M_{X}(t)M_{Y}(t)\)

 

MGF for Common Distributions

  • Gamma: \(M(t)=\dfrac{1}{(1-\theta t)^n}\)
  • Normal: \(M(t)=e^{\mu t+\sigma^2t^2}\)

 

MGF for Two Variables

\(M_{X_1,X_2}(t_1,t_2)=E[e^{t_1 X_1+t_2 X_2}]\)

  • \(\dfrac{\partial^n}{\partial t_i^n}M_{X_1,X_2}(0,0)=E[X_i^n]\)
  • \(\dfrac{\partial^2}{\partial t_1 \partial t_2}M_{x_1,X_2}(t_1=0,t_2=0)=E[X_1X_2]\)

 

Probability Generating Function

The probability generating function \(P_N(z)\) of a random variable N is defined by:

\(P_N(z)=E[z^{N}]\)

 

PGF and Probability:

\(p_n=\dfrac{P^{(n)}(0)}{n!}\)

 

PGF and MGF

\(P(z)=E[z^N]=E[e^{N\ln z}]=M(\ln z)\)

 

PGF Features

  1. It generates factorial moments; the nth derivative of the probability generating function evaluated at 1 is the nth factorial moment.:
    \(\mu_{(n)}=P^{(n)}(1)=E[X(X-1)…(X-n+1)]\)
  2. It is multiplicative.
    \(P_{X+Y}(z)=P_X(z)P_Y(z)\)

 

Transformations

CDF

For a random variable \(X\) and another random variable that is a function of \(X\), \(Y=g(X)\), we may use CDF to determine the distribution of \(Y\):

\(F_Y(x)=Pr(Y\le x)=Pr(g(X)\le x)\)

If \(g(x)\) is a monotonically strictly increasing function, then it has an inverse function \(h(y)=g^{-1}(y)\) for which \(h(g(x))=x\):

\(F_Y(y)=Pr(X\le g^{-1}(y))=F_X(g^{-1}(y))\)

If \(g(x)\) is a monotonically strictly decreasing function, then it has an inverse function as well, and:

\(F_Y(y)=Pr(X\ge g^{-1}(y))=1-F_X(g^{-1}(y))+Pr(X=g^{-1})(y)\), where the last term may be dropped if \(X\) is a continuous random variable:

\(F_Y(y)=Pr(X\ge g^{-1}(y))=1-F_X(g^{-1}(y))\)

 

PDF

Assume \(g(x)\) is one-to-one, and let \(h(x)=g^{-1}(x)\). The chain rule requires multiplication by the absolute value of the derivative of \(h(x)\):

\(f_Y(x)=f_X(h(x))|h'(x)|\)

The ranges in which \(f_X(x)\) is nonzero must be transformed to the ranges in which \(f_Y(y)\) is nonzero by applying \(g(x)\) to those ranges.

For a many-to-one transformation, you must sum up densities for all values mapping to the region you are calculating the probability of.

 

Transformations of Two or More Variables

Given X and Y and the density function of \(Z=g(x,y)\) for example, then here are the steps:

  1. Add another target variable. For example, let \(W=X\)
  2. Determine the inverse transformation by expressing \(X\) and \(Y\) as functions of \(W\) and \(Z\).
    • \(X=h_1(W,Z)\)
    • \(Y=h_2(W,Z)\)
  3. Calculate the Jacobian of the inverse transformation.
    Jacobian: \(J=\left| \begin{matrix}
    \dfrac{\partial x}{\partial z} & \dfrac{\partial x}{\partial w}  \\
    \dfrac{\partial y}{\partial z} & \dfrac{\partial y}{\partial w}  \\
    \end{matrix} \right|\)
  4. The joint density function of the transformed variables is:
    \(f_{Z,W}(z, w)=f_{X,Y}(h_1(z, w), h_2(z, w))|J|\)
  5. The domain of the variables must be transformed as well. Since we are interested in \(Z\), the domain would be expressed as a range of \(z\) and a range of was a function of \(z\).
  6. Integrate \(f_{Z,W}(z,w)\) over \(w\) to obtain the marginal density function of \(Z\).

 

Life Insurance

For a(n) (ordinary) deductible \(d\),

Expected payment paid by policyholder:

\(E[X]=\int_{-\infty}^{d}{xf_X(x)dx}+\int_{d}^{\infty}{df_X(x)dx}=\int_{-\infty}^{d}{xf_X(x)dx}+dS_X(d)\)

Expected payment paid by insurer:

\(E[X]=\int_{d}^{\infty}{(x-d)f_X(x)dx}\)

Variance of payment paid by policyholder:

\(Var(Y)=E[Y^2]-E[Y]^2\), where

      • \(E[Y]=\int_{-\infty}^{d}{xf_X(x)dx}+\int_{d}^{\infty}{df_X(x)dx}=\int_{-\infty}^{d}{xf_X(x)dx}+dS_X(d)\)
      • \(E[Y^2]=\int_{-\infty}^{d}{x^2 f_X(x)dx}+d^2 S_X(d)\)

Variance of payment paid by insurer:

\(Var(Y)=E[Y^2]-E[Y]^2\), where

      • \(E[Y]=\int_{d}^{\infty}{(x-d)f_X(x)dx}\)
      • \(E[Y^2]=\int_{d}^{\infty}{(x-d)^2 f_X(x)dx}\)

For exponentially distributed loss amount \(x\):

      • \(E[Y]=\int_{d}^{\infty}{(x-d)f_X(x)dx}=\int_{d}^{\infty}{(x-d)\theta^{-1}e^{-\theta^{-1}x}dx}=\int_{0}^{\infty}{x\theta^{-1}e^{-\theta^{-1}(x+d)}dx}\)
        \(E[Y]=e^{-\theta^{-1}d}\int_{0}^{\infty}{x\theta^{-1}e^{-\theta^{-1}x}dx}=e^{-\theta^{-1}d}(\theta^{-1})\)
      • \(E[Y^2]=\int_{d}^{\infty}{(x-d)^2 f_X(x)dx}=\int_{d}^{\infty}{(x-d)^2 \theta^{-1}e^{-\theta^{-1}x}dx}=\int_{0}^{\infty}{x^2\theta^{-1}e^{-\theta^{-1}(x+d)}dx}\)
        \(E[Y^2]=e^{-\theta^{-1}d}\int_{0}^{\infty}{x^2\theta^{-1}e^{-\theta^{-1}x}dx}=e^{-\theta^{-1}d}(2\theta^{-2})\)